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Growing Surfactant Waves in Thin Liquid Films

Driven by Gravity

Thomas P. Witelski, Michael Shearer, and Rachel Levy

The dynamics of a gravity-driven thin film flow with insoluble surfactant are described

in the lubrication approximation by a coupled system of nonlinear PDEs. When the to-

tal quantity of surfactant is fixed, a traveling wave solution exists. For the case of con-

stant flux of surfactant from an upstream reservoir, global traveling waves no longer

exist as the surfactant accumulates at the leading edge of the thin film profile. The dy-

namics can be described using matched asymptotic expansions for t → ∞. The solution

is constructed from quasistatically evolving traveling waves. The rate of growth of the

surfactant profile is shown to be O(
√

t) and is supported by numerical simulations.

1 Introduction

The dynamics of thin liquid films on solid substrates have been studied extensively in a

variety of contexts, including gravity-driven flows [4, 12, 22, 31], spin-coating [30], and

flows driven by strong surface tension [1, 25, 26]. Under lubrication theory, the govern-

ing equations for free-surface Stokes flow of thin films of viscous fluids can be reduced

to a single nonlinear evolution equation for the surface height, h = h(x, t) [26]. When

surface tension is significant, the equation is fourth-order. Marangoni surface stresses

are driving forces created by variations in the coefficient of surface tension. These forces

can be generated by thermal [2, 23], electrical [19], or chemical means [20]. Flows driven

by Marangoni stresses have been found to yield interesting instabilities and new kinds
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2 Thomas P. Witelski et al.
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x

h = hR
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Surfactant layer

Figure 1.1 Schematic representation of a

monolayer of insoluble surfactant (with local

concentration Γ indicated by grayscale shad-

ing) spreading on a thin film with local height

h (tan region) flowing down an inclined plane.

of waves [2, 5, 14, 21]. Chemical Marangoni stresses can be generated by the presence

of surfactants (surface active agents), which typically decrease surface tension; nonuni-

form distributions of surfactant molecules creates such surface stresses [3, 13, 14]. In-

soluble surfactants are transported by the fluid flow at the free surface, leading to a cou-

pled PDE system for the concentration of surfactant and the film height [3, 9, 27–29] (see

Figure 1.1).

In a series of recent numerical studies, Edmonstone, Matar, and Craster [6, 7]

considered one-dimensional flow with surfactant down an inclined plane, and explored

the stability to transverse perturbations. An interesting observation arising from their

study is that when surfactant is supplied from an upstream reservoir, it accumulates at

the leading edge of the flow, resulting in a steady increase of the maximum surfactant

concentration (see Figure 1.2). Motivated by these observations, we present an analysis

of this problem that determines the evolution of the surfactant profile. Our work builds

on the results of [16, 17] to explain the structure of solutions in terms of traveling waves

of a simplified problem in which capillarity and other regularizing influences are ne-

glected. One result emerging from these studies is that the flow on an inclined plane is

significantly different from the spreading of fluid on a horizontal surface [13, 14, 20, 27–

29].

Model equations. Let h = h(x, t) ≥ 0 be the nondimensional height of the free surface of

the fluid film, and let Γ = Γ(x, t) ≥ 0 denote the scaled concentration of insoluble surfac-

tant on the free surface, where x is the position measured down the inclined plane. The
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Figure 1.2 Evolution of the film thickness h(x,t) (a) and the surfactant concentra-

tion Γ(x,t) (b) from numerical simulations of system (1.1a) and (1.1b) with a steady

influx of supply of surfactant at x = 0with ΓL > 0.

system of governing equations is [6, 7, 16, 17, 27]

ht +

(
1

3
h3

)
x

−

(
1

2
h2Γx

)
x

= β

(
1

3
h3hx

)
x

, (1.1a)

Γt +

(
1

2
h2Γ

)
x

−
(
hΓ Γx

)
x

= β

(
1

2
h2Γ hx

)
x

+ δΓxx. (1.1b)

We consider this system on the half line x ≥ 0 with boundary conditions

h(0, t) = hL, h(x −→ ∞, t) = hR, (1.2a)

Γ(0, t) = ΓL, Γ(x −→ ∞, t) = 0. (1.2b)

The terms with coefficients β, δ on the right-hand side regularize the underlying trans-

port equations. In this model, we have omitted fourth-order regularizing capillarity

terms. The role of these terms will be shown to have a weak influence on the wave struc-

tures studied here, as will be described in a forthcoming paper [17].

We restrict attention to the case hL > hR in which an advancing front moves

down the inclined plane, into a precursor film with height hR. The precursor film will

typically be very thin compared to the upstream film, that is, hL � hR. The problem

statement is completed by specifying initial conditions

h(x, 0) = h∗(x) ≥ hR, Γ(x, 0) = Γ∗(x) ≥ 0. (1.3)
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4 Thomas P. Witelski et al.

Integrating (1.1b) over the domain yields the rate of growth of the total surfac-

tant mass, I, in terms of the flux set by the boundary conditions at x = 0,

dI

dt
=

d

dt

( ∫
∞

0

Γ(x, t)dx

)
=

1

2
h2

LΓL. (1.4)

If ΓL = 0, then the mass of surfactant is conserved for all times, that is, dI/dt = 0; this

is sometimes called the constant volume (of surfactant) case [6, 7]. For constant ΓL > 0

the mass of surfactant grows linearly in time, that is, I(t) = (1/2)h2
LΓL(t + t∗), where

the constant t∗ is related to the mass of the initial data. The boundary condition can

be interpreted as describing a reservoir with an unlimited supply of surfactant which

maintains the constant surfactant concentration ΓL at x = 0 (see Figure 1.2).

For β = δ = 0 (1.1a) and (1.1b) form a coupled hyperbolic-degenerate parabolic

system [28] that sustains wave-like solutions with finite propagation speed. While shar-

ing elements with models for wave propagation in hyperbolic conservation laws and

traveling waves in parabolic equations [10, 18, 32] such thin-film/surfactant systems

have novel features that make them the focus of continuing mathematical analysis [3,

9, 17, 27–29].

In this article, we focus on the influence of the surfactant boundary condition

parameter ΓL ≥ 0; the results and analysis depend on an understanding of the special

case ΓL = 0, in which the total mass of surfactant in the system is fixed. In Section 2,

we review and generalize the weak traveling wave solution found in [16] for ΓL = 0. In

Section 3, a quasistatically growing traveling wave is constructed via matched asymp-

totics; it describes the dynamics for ΓL > 0. In particular, a simple O(
√

t) self-similar

growth of the long-time surfactant distribution is predicted by asymptotics, and verified

by results from numerical simulations of (1.1a) and (1.1b).

2 Traveling waves for ΓL = 0 with β = δ = 0

In the absence of regularization (i.e., β = δ = 0) system, (1.1a), and (1.1b) have travel-

ing wave solutions, as described by [16]. Here we summarize the analysis from [16], as it

provides the starting point for our study of the current problem.

Consider steady profile traveling wave solutions with speed s,

h(x, t) = h(η), Γ(x, t) = Γ(η), η = x − st. (2.1)
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Growing Surfactant Waves in Thin Liquid Films Driven by Gravity 5

Substituting (2.1) into (1.1a) and (1.1b) and integrating the resulting system of ODEs

once in η yields

− sh +
1

3
h

3
−

1

2
h

2 dΓ

dη
=

1

3
βh

3 dh

dη
− kh, (2.2a)

− sΓ +
1

2
h

2
Γ − h Γ

dΓ

dη
=

1

2
βh

2
Γ
dh

dη
+ δ

dΓ

dη
− kΓ , (2.2b)

where kh, kΓ are constants of integration. Imposing the asymptotic boundary conditions

h(η → −∞) → hL and h(η → ∞) → hR in (2.2a) with the assumption that h
′
, Γ

′
→ 0 for

|η| → ∞, we find

s =
1

3

(
h2

L + hLhR + h2
R

)
> 0, kh =

1

3
hLhR

(
hL + hR

)
> 0. (2.3)

Furthermore, if the surfactant profile satisfies Γ(η → ±∞) = 0 then (2.2b) forces kΓ = 0.

For β = δ = 0, the solution is a weak solution of (2.2a) and (2.2b) in which h(η)

and Γ
′
(η) are piecewise constant (see Figure 2.1) [16]:

h(η) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

hL, η < η1,

h1, η1 < η < 0,

h2, 0 < η < η2,

hR, η2 < η,

Γ
′
(η) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

0, η < η1

G1, η1 < η < 0,

G2, 0 < η < η2,

0, η2 < η.

(2.4)

The values of the four constants {hj, Gj} for j = 1, 2 in (2.4) are determined by satisfying

coupled algebraic jump conditions at η = 0, η1, η2. In [16, 17] it is shown that the values

h1, h2 satisfying 0 ≤ hR < h2 < hL < h1 are given by the positive real roots of the

polynomial equation

h3 − 6sh + 12kh = 0. (2.5)

These roots exist if and only if the ratio of downstream to upstream film heights is below

a threshold:

0 ≤ hR

hL
<

1

2

(√
3 − 1

)
. (2.6)

The surfactant slopes G1 > 0, G2 < 0 are then given by

G1 =

(
h1 − h2

)(
2h1 + h2

)
6h1

, G2 = −

(
h1 − h2

)(
h1 + 2h2

)
6h2

. (2.7)
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Figure 2.1 The weak traveling solution

(2.4): (a) the piecewise constant h(η) profile,

(b) the piecewise constant Γ
′
(η) profile, and

(c) the piecewise linear profile for Γ(η) (2.8).

For imposed boundary conditions hL = 1and

hR = 0.1, (2.5), (2.7), and (2.9) yield the val-

ues h1 ≈ 1.3787, h2 ≈ 0.2019, G1 ≈ 0.4210,

G2 ≈ −1.7316, η1 ≈ −2.3753, η2 ≈ 0.5775.
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Growing Surfactant Waves in Thin Liquid Films Driven by Gravity 7

The surfactant profile is continuous and piecewise linear [16], consequently, integrating

the solution for Γ
′
(η) subject to the condition Γ(0) = 1 yields the solution

Γ(η) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

0, η ≤ η1,

1 + G1η, η1 ≤ η ≤ 0,

1 + G2η, 0 ≤ η ≤ η2,

0, η2 ≤ η,

(2.8)

where continuity of Γ(η) at Γ = 0 determines the values η1, η2 to be

η1 = −
1

G1
< 0, η2 = −

1

G2
> 0. (2.9)

Observe that the surfactant distribution is compactly supported and has total mass

I =

∫
∞

−∞

Γdη =
1

2

(
η2 − η1

)
=

6
(
h1 + h2

)
(
h1 + 2h2

)(
2h1 + h2

) . (2.10)

From the geometry of Figure 2.1(c), I is the area of the triangular profile Γ(η).

Remarks 2.1. (1) In the forthcoming article [17], it will be shown that this solution is

structurally stable with respect to regularizations introduced by diffusive transport of

surfactant (δ > 0), diffusive transport of bulk fluid due to gravitational body forces

(β > 0), and capillarity (the effects of surface tension). These regularizations are shown

to leave h1, h2 and G1, G2 essentially unchanged; their effects are localized to the neigh-

borhoods of the points η = 0, η1, η2.

(2) If the precursor thickness hR approaches zero, we find (from [17]) that h2 → 0

and h1 →

√
2hL. Consequently, from (2.7), G2 → −∞ (a shock in the surfactant profile at

η = 0) while G1 remains finite. From (2.9), η2 → 0; and hence the h2 plateau in the film

thickness vanishes, while the surfactant profile approaches a sawtooth wave.

2.1 Scale-invariant structure of the traveling wave

The condition Γ(0) = 1 determining the maximum surfactant concentration is an arbi-

trary normalization. This condition can be imposed at η = 0 thanks to translation invari-

ance of the PDEs (1.1a) and (1.1b). The maximum value itself can be set to any positive

constant, Γmax ≡ m > 0. In [16] it was noted that the solutions of (1.1a) and (1.1b) with
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8 Thomas P. Witelski et al.

β = δ = 0 are invariant under the continuous one-parameter scaling h → h, Γ → mΓ ,

x → x/m, t → t/m. Consequently, up to translation invariance, the general traveling

wave solution of (1.1a) and (1.1b) with β = δ = 0 subject to boundary conditions (1.2a)

and (1.2b) with ΓL = 0 is

h(x, t) = h

(
x − st

m

)
, Γ(x, t) = mΓ

(
x − st

m

)
(2.11)

for any m > 0.

Note that the trivial case of no surfactant (Γ ≡ 0) corresponds to the singular

case of (2.11) with m = 0,

h0(η) =

⎧

⎨

⎩

hL, η < 0,

hR, 0 < η,
Γ0(η) ≡ 0. (2.12)

The wave speed given by (2.3) is independent of m ≥ 0. For m = 0, this is to be ex-

pected from the fact that (2.12) is the shock wave solution of the decoupled equation

ht + ((1/3)h3)x = 0, a scalar conservation law. We can therefore interpret the influence

of the surfactant as modifying the shape of the surfactant-free shock profile (2.12), ef-

fectively broadening the width of the shock structure through the introduction of the h1

and h2 plateau regions. In the limit of vanishing surfactant concentration, Γmax → 0, we

observe that η2 − η1 → 0, so although h1, h2 are independent of Γmax, solution (2.11) col-

lapses to solution (2.12), shrinking the plateau with height h1 to zero width.

It is noteworthy that solution (2.11) depends upon having upstream and down-

stream film heights below the critical ratio (2.6). If (1/2)(
√

3 − 1) < hR/hL < 1, then a

different solution emerges from PDE simulations, even though the surfactant-free solu-

tion is still a single monotonic traveling wave. The structure of the new solution is the

subject of current investigation.

3 Dynamics for ΓL > 0 with β, δ > 0

We now focus on understanding the role of the boundary condition parameter ΓL in de-

termining the dynamics, as in the simulation with ΓL > 0 shown in Figure 1.2.

If ΓL = 0, then the total amount of surfactant is conserved for all times. If β = δ =

0 and we have a traveling wave solution (2.11) for the surfactant profile, then the value of

m is determined by the mass of the initial condition Γ∗(x) (1.3),

I =

∫
∞

0

Γ∗(x)dx = m2

∫

Γ(ζ)dζ = m2I (3.1)
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Growing Surfactant Waves in Thin Liquid Films Driven by Gravity 9

with I given by (2.10). More generally, we expect that the traveling wave solution (2.11) is

structurally stable and attracting for t → ∞ from a broader set of initial data and small

positive β, δ.

If ΓL > 0, then there are no smooth bounded traveling wave solutions of (2.2a)

and (2.2b) satisfying upstream and downstream boundary conditions. To see this, we

note that the upstream condition implies kΓ = ((1/2)h2
L − s)ΓL, whereas the downstream

boundary condition gives kΓ = 0. For ΓL > 0 these are consistent only in the special case

s = (1/2)h2
L; from (2.3), this yields the condition hR/hL = (1/2)(

√
3 − 1), the threshold

value from (2.6). This leads to the trivial solution h = constant as the only bounded

traveling wave at this speed. But this solution conflicts with the boundary conditions,

hL > hR, so it is not acceptable. Consequently, the solution of (1.1a) and (1.1b) in this

case must take a different form; we will turn to the use of matched asymptotics to con-

struct the solution.

The behavior observed in numerical simulations in Figure 1.2 suggests that the

solution with ΓL > 0 still resembles the traveling wave solution (2.11). However, the Γ

profile evolves, suggesting that the maximum of Γ should be generalized to be a time-

dependent increasing function, m(t), to be used in (2.11). We now present analysis to

support this description.

3.1 Approximate global solution for t → ∞

Motivated by the above discussion, we consider a change of variables that allows for

time-dependence in the maximum of Γ and in the speed of propagation. All solutions of

(1.1a) and (1.1b) can be written in the form

h(x, t) = h̃(ζ, t), Γ(x, t) = m(t)Γ̃(ζ, t), ζ =
x − x0(t)

m(t)
, (3.2)

where the functions x0(t), m(t) must be determined. Substituting (3.2) into (1.1a) and

(1.1b) yields the new governing PDEs:

h̃t − x ′
0(t)h̃ζ − m ′(t)ζh̃ζ +

(
1

3
h̃3

)
ζ

−

(
1

2
h̃2Γ̃ζ

)
ζ

=
β

m(t)

(
1

3
h̃3h̃ζ

)
ζ

, (3.3a)

Γ̃t − x ′
0(t)Γ̃ζ−m ′(t)ζΓ̃ζ+m ′(t)Γ̃ +

(
1

2
h̃2Γ̃

)
ζ

−
(
h̃Γ̃ Γ̃ζ

)
ζ
=

β

m(t)

(
1

2
h̃2Γ̃ h̃ζ

)
ζ

+
δ

m(t)
Γ̃ζζ.

(3.3b)
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10 Thomas P. Witelski et al.
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Figure 3.1 Long-time evolution of the film thickness h(x,t) (a) and the surfactant

concentration Γ(x,t) (b) from numerical simulations of system (1.1a) and (1.1b)

with hL = 1, hR = 0.1, β = 0.1, δ = 0.01, and ΓL = 0.2. Time profiles for

t = 5000,10000,15000,...,60000 shifted into the reference frame x − x0(t) where

the position of the maximum of Γ(x,t) is stationary.

For concreteness, in numerical simulations, x0(t) will be defined by the position of the

maximum of Γ(x, t). Figure 3.1 shows that in this moving reference frame, h, Γ exhibit

a well-defined growth. To depict the scaled forms h̃ and Γ̃ , the same profiles are plot-

ted in the forms (3.2) in Figure 3.2 with m(t) replaced by the numerical result Γmax(t) =

maxx Γ(x, t).

Plotted in this form, the profiles indeed appear to approach the traveling wave

solution, (2.4) and (2.8), as t → ∞. This behavior can be obtained directly from (3.3a)

and (3.3b) subject to the following assumptions.

(1) As t → ∞, the rescaled solutions h̃, Γ̃ converge to quasisteady profiles that

are independent of t: h̃ → h̃(ζ), Γ̃ → Γ̃(ζ).

(2) The maximum of the surfactant profile grows slowly (sublinearly) with time,

m(t) = O
(
tα

)
, as t −→ ∞ with 0 < α < 1. (3.4)

(3) The propagation speed x ′
0(t) remains bounded for all times and approaches a

positive constant: x ′
0(t) → s̃ > 0, as t → ∞.

Assumption (1), supported by Figure 3.2, suggests that the h̃t, Γ̃t terms in (3.3a) and

(3.3b) can be neglected to yield equations involving only ζ-derivatives of h̃, Γ̃ . From as-

sumption (2), m(t) → ∞ and m ′(t) → 0 as t → ∞. Consequently, the terms on the
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Growing Surfactant Waves in Thin Liquid Films Driven by Gravity 11

right-hand sides of (3.3a) and (3.3b) will vanish since β/m → 0 and δ/m → 0. Thus regu-

larization offered by these terms becomes negligible for long times. Similarly, the terms

on the left-hand sides multiplied by m ′(t) become negligible (with the mild assumption

that ζh̃ζ, ζΓ̃ζ are bounded as |ζ| → ∞). Using assumption (3), the resulting equations for

t → ∞ can be integrated once in ζ to yield

− s̃h̃ +
1

3
h̃3 −

1

2
h̃2 dΓ̃

dζ
= −kh̃, (3.5a)

− s̃Γ̃ +
1

2
h̃2Γ̃ − h̃Γ̃

dΓ̃

dζ
= −kΓ̃ , (3.5b)

where kh̃, kΓ̃ are constants of integration. Suitable boundary conditions corresponding

to (1.2a), (1.2b) are given by

h̃(ζ −→ −∞) = hL, h̃(ζ −→ ∞) = hR, (3.5c)

Γ̃(ζ −→ −∞) = 0, Γ̃(ζ −→ ∞) = 0. (3.5d)

The boundary condition on Γ̃(ζ → −∞) follows from Γ̃(ζ → ∞) = ΓL/m(t) → 0 as t →

∞. As a result, the influence of the boundary condition ΓL does not enter in the leading

order problem (3.5a) and (3.5b) for t → ∞. At this point, we observe that problem (3.5a)

and (3.5b) reduces to that of Section 2 (2.2a) and (2.2b) and we have the leading order

solution for t → ∞,

h̃(ζ, t) ∼ h(ζ), Γ̃(ζ, t) ∼ Γ(ζ), x ′
0(t) ∼ s. (3.6)

Returning to the original PDE system (1.1a) and (1.1b) on the domain x > 0, as-

sumption (2) is justified by considering the evolution of the mass of surfactant. Figure 1.2

suggests that the surfactant profile with ΓL > 0 can be approximated by a uniform layer

with Γ = ΓL together with a growing triangular profile (2.8), scaled as in (2.11) by m(t).

With respect to calculating the mass of surfactant, this approximate description of Γ(x, t)

can be expected to yield a vanishingly small relative error as t → ∞. Hence for long times,

I(t) is given by

I(t) =

∫
∞

0

Γdx ≈ ΓLs
(
t + t0

)
+

1

2
Γ2
L

∣∣η1

∣∣ + m2(t)
∫η2

η1

Γ(η)dη, (3.7)

where t0 is a constant related to initial conditions. The first term on the right of (3.7)

is the surfactant in the uniform ΓL layer with length increasing at a rate equal to the
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η20η1

(x− x0(t))/Γmax(t)

0

1
h

∼
h̃

1
η1

(a)

η20η1

(x− x0(t))/Γmax(t)

0

1

Γ
(x

,t
)/

Γ m
ax

(t
)

0 η1

(b)

Figure 3.2 The long-time solution profiles from Figure 3.1 rescaled according to

(3.2). Dashed lines show the traveling wave solution (2.4), (2.8). Insets show details

of the evolution near η1 ≈ −2.375, given by (2.9).

propagation speed of the advancing triangular wave (asymptotically x ′
0 ∼ s). The second

term is a finite contribution from the region joining the uniform layer to the triangular

profile. Substituting (3.7) into (1.4) yields

dI

dt
≈ I

d
(
m2

)
dt

+ sΓL =
1

2
h2

LΓL. (3.8)

Using (2.3), we obtain

m(t) ∼

(
ΓL

6I

(
h2

L − 2hLhR − 2h2
R

))1/2√
t + t∗, t −→ ∞. (3.9)

Consequently, the second assumption, (3.4), is verified with α = 1/2.1 Observe that the

condition that the coefficient of (3.9) be real requires that 1 − 2r − 2r2 > 0, where r is the

ratio r = hR/hL. The resulting condition on this ratio is 0 < r < (1/2)(
√

3−1), precisely co-

inciding with the condition (2.6) for the existence of steady profile waves [16]. Figure 3.3

shows excellent agreement between the prediction (3.9) and the results of the numerical

simulations.

1Note that the traveling wave solution (3.6) could also be expected for time-dependent boundary conditions,
ΓL(t) = O(tγ) if 0 ≤ γ < 1. For γ = 1, the m′(t) terms on the left-hand sides of (3.3a) and (3.3b) must be
retained, which would lead to a new class of self-similar solutions.
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6000040000200000

t

0

10

20

30

Γmax(t)
m(t)

Figure 3.3 Comparison of the maximum surfactant

concentration from the numerical simulation of Fig-

ures 3.1, 3.2, Γmax(t) = maxx Γ(x,t) (solid dots) and

the predicted evolution m(t) given by (3.9) (solid

curve).

In summary, we have shown that for long times, the solutions approach growing

traveling waves,

h(x, t) ∼ h

(
x − x0(t)

m(t)

)
, Γ(x, t) ∼ m(t)Γ

(
x − x0(t)

m(t)

)
. (3.10)

Some further comments are appropriate at this point. First, for large times, when the

influence of the boundary conditions at x = 0 are weak, the traveling wave solutions of

(1.1a) and (1.1b) should be invariant with respect to spatial translations, x → x + ε1

for any real ε1. But secondly, from the autonomous equations (3.5a) and (3.5b), the long

time growing solutions (3.2) should also be invariant with respect to translations in their

spatial variable, ζ → ζ + ε2 for some ε2. Combining these observations, we note that the

general form for the moving reference frame for t → ∞ is

x0(t) ∼ st − ε2m(t) − ε1 =⇒

dx0

dt
∼ s − ε2m ′(t) ∼ s. (3.11)

This validates the third assumption. See Figure 3.4(a) for numerical evidence supporting

(3.11). If x0(t) is known, then from (3.2) the positions defining the region of support of the

dominant distribution (η1, η2) are given by

x1(t) = x0(t) + η1m(t), x2(t) = x0(t) + η2m(t), (3.12)

see Figure 3.4(b).
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86420
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t
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x
0
(t

)
−

st

(a)

86420
×104

t

−80

−40

0

40

x
−

x
0
(t

)

x2(t) − x0(t)

x1(t) − x0(t)

(b)

Figure 3.4 (a) Position of the moving reference frame relative to the asymp-

totic traveling wave speed s = 0.37 from (2.3), values from the numerical simu-

lation (solid dots) show a O(c1 + c2

√
t) lag (solid curve) as predicted by (3.11).

(b) Positions of the edges of the region of support of the triangular surfactant

profile relative to x0(t), numerical simulation values (dots) compared with pre-

diction (3.12) (solid curves) with η1 ≈ −2.375, η2 ≈ 0.5775, given by (2.9), and

m(t) ≈ 0.1327
√

t+ t∗ from (3.9) for hL = 1, hR = 0.1and ΓL = 0.2.

One final remaining issue is that while (3.10) suggests that Γ(x, t) = 0 for x <

x1(t), it is clear from Figure 1.2 that Γ ∼ ΓL > 0. This is resolved in the next subsection

via boundary layer analysis.

3.2 Boundary layer structures at the jump discontinuities η1 and η2

The limit 1/m → 0 in (3.3a) and (3.3b) eliminated the regularization given by the second-

order terms on the right-hand sides of those equations. This is a singular perturbation

[11, 15] of the full system for t → ∞; and hence the weak solution (3.10) should be inter-

preted as a leading order outer solution. In particular, it is not uniformly valid for all ζ;

at points where jump discontinuities occur in h(ζ), Γ(ζ), the influence of the higher-order

terms may strongly influence the local structure of the solution, see insets in Figure 3.2.

In this section, we use matched asymptotics to construct boundary layer solutions as in-

ner expansions of the solution in the neighborhoods of the shocks at η1 and η2. These

inner solutions can be combined with (3.10) and a boundary layer at η = 0 (considered in

Section 3.3 ) to yield a uniformly valid approximate solution.

Define ε ≡ 1/m → 0 as a small parameter for the limit t → ∞. Consider a small

neighborhood of the shock at ζ = η1, defined by ζ = η1 + ελy with λ > 0 to be determined

and y = O(1). The profile h̃ remains finite and bounded, so the quasisteady solution
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should take the form h̃ = ĥ(y) + O(ε). Similarly, we expect that for ζ ≤ η1 the scaled sur-

factant is of the order Γ̃ ≈ ΓL/m = O(ε), hence the solution should be Γ̃ = εΓ̂(y) + O(ε2).

Substituting these into (3.3a) and (3.3b) and balancing the dominant terms determines

the scaling to be λ = 1 and (after integrating in y) yields the leading order equations:

−
[
ŝ1 + η1m ′(t)

]
ĥ +

1

3
ĥ3 −

1

2
ĥ2 dΓ̂

dy
=

1

3
βĥ3 dĥ

dy
− kĥ,1, (3.13a)

−
[
ŝ1 + η1m ′(t)

]
Γ̂ +

1

2
ĥ2Γ̂ − ĥΓ̂

dΓ̂

dy
=

1

2
βĥ2Γ̂

dĥ

dy
+ δ

dΓ̂

dy
− kΓ̂ ,1, (3.13b)

where the k’s are constants and we have removed the assumption from (3.6) that the

speed ŝ1 is known. Note that the m ′(t) terms are formally higher-order terms as t → ∞,

but we retain them in (3.13a) and (3.13b) to help indicate the fact that the boundary layer

solution is slowly varying in time and has speed different from x ′
0(t) (see (3.12)). Ne-

glecting this weak variation, observe that (3.13a) and (3.13b) take the same form as the

traveling wave equations (2.2a) and (2.2b). Hence the boundary layer solution is also a

traveling wave, see Figure 3.5. One difference, however, is that the solutions of (3.13a)

and (3.13b) are subject to only the left boundary conditions ĥ(y → −∞) → hL, Γ̂(y →

−∞) → ΓL which determine the constants of integration for t → ∞ to be

kĥ,1 = ŝ1hL −
1

3
h3

L, kΓ̂ ,1 = ŝ1ΓL +
1

2
h2

LΓL. (3.13c)

In contrast to (2.3), note that the speed ŝ1 has not yet been determined.

An analogous set of boundary layer equations can be obtained in the neighbor-

hood of η2 with η1 replaced by η2 and different constants for kĥ,2 and kΓ̂ ,2, ŝ2 determined

by the boundary conditions ĥ(y → ∞) → hR, Γ̂(y → ∞) → 0,

kĥ,2 = ŝ2hR −
1

3
h3

R, kΓ̂ ,2 = 0. (3.14)

The traveling wave structure of these solutions are shown in Figure 3.6. The need for this

boundary layer is not as apparent as for (3.13a), (3.13b), and (3.13c) since the outer so-

lution (3.10) is compatible with the boundary conditions for y → ∞. However, like the

solution at η1, this solution at η2 gives the structure defining the smooth transition from

one level of h to another, h2 → hR (hL → h1 at η1), and from one slope of Γ to another,

Γ ′ = G2 → Γ ′ = 0 (Γ ′ = 0 → Γ ′ = G1 at η1).

With respect to system (3.3a) and (3.3b) the inner solutions exhibit sharpening

features with the widths of the boundary layers decreasing as t → ∞ (see insets in

Figure 3.2). However, under the rescaling appropriate to the boundary layers, we observe
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Figure 3.5 The numerical solution profiles from Figure 3.2 shifted into the refer-

ence frame for the boundary layer at η1 , where locally (here roughly y < 20), the

solution is a quasisteady traveling wave stationary in this frame (boxed). The outer

solution spreads to the right in this reference frame.

0−20−40

y ∼ x− x2(t)

0

1

h

(a)

0−20−40

y ∼ x− x2(t)

0

4

8

12

Γ

(b)

Figure 3.6 The numerical solution profiles from Figure 3.2 shifted into the refer-

ence frame for the boundary layer at η2 , where locally (here roughly −5 < y), the

solution is a quasisteady traveling wave stationary in this frame (boxed). The outer

solution spreads to the left in this reference frame.

that these solutions are quasisteady traveling waves. Moreover, the boundary layer scal-

ing essentially returns the system to the original form (1.1a) and (1.1b) with y ∼ x, ĥ ∼ h,

and Γ̂ ∼ Γ . Consequently, while for ΓL > 0 the solution is not globally a traveling wave,

traveling wave solutions still accurately describe h, Γ locally in these boundary layers

(see Figures 3.5, 3.6).
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3.3 Boundary layer at η = 0

As described above, on the ζ = O(1) lengthscale, for m → ∞, the solution approaches

(3.6) and appears to have jump discontinuities in h̃, Γ̃ ′ at ζ = 0. Like the behavior at

η = η1, η2, the presence of higher-order regularization smooths the solution over a nar-

row boundary layer at ζ = 0. However, the structure at η = 0 is different than in the other

boundary layers because here Γ = O(m) → ∞ whereas Γ = O(1) near η1, η2.

To characterize the boundary layer at η = 0, where Γ reaches its maximum,m(t) =

Γmax(t), we use the ansatz

h(x, t) ∼ ȟ(η), Γ(x, t) ∼ m(t) + Γ̌(η), η = x − st, (3.15)

where ȟ, Γ̌ = O(1) on O(1) bounded neighborhoods of η = 0 as m(t) → ∞. Note that

Γ̌(0) = 0 from the definition of Γmax. Substituting this ansatz into the original governing

equations (1.1a) and (1.1b), the traveling wave equation (2.2a) for ȟ(η) is recovered at

leading order from (1.1a),

−sȟ +
1

3
ȟ3 −

1

2
ȟ2 dΓ̌

dη
=

1

3
βȟ3 dȟ

dη
− ch. (3.16a)

Substituting into (1.1b) and using (3.4) for t → ∞, we obtain the dominant balance at

O(m),

1

2
ȟ2 − ȟ

dΓ̌

dη
=

1

3
βȟ3 dȟ

dη
− cΓ . (3.16b)

Note that the influence of the regularization by surface diffusion, associated the param-

eter δ is not present in (3.16a) and (3.16b). On the other hand, the parameter β > 0 is

essential in determining the structure of the boundary layer. In contrast, both β and δ

were present in the (3.13a) and (3.13b) boundary layer equations.

Applying the boundary conditions at η → ±∞ and using the result from [16] that

s =
1

6

(
h2

1 + h1h2 + h2
2

)
, (3.17)

we obtain cΓ = −s and ch = h1h2(h1 + h2)/12 = kh, see (2.3). Consequently, (3.16a) and

(3.16b) can be rewritten as the autonomous system

dȟ

dη
=

(
ȟ − h1

)(
ȟ − h2

)(
ȟ + h1 + h2

)
βȟ3

,
dΓ̌

dη
=

2s
(
ȟ − h∗

)
ȟ2

, (3.18)

D
ow

nloaded from
 https://academ

ic.oup.com
/am

rx/article/doi/10.1155/AM
R

X/2006/15487/135867 by guest on 10 April 2024



18 Thomas P. Witelski et al.

0

η

0

h2

h∗

h1

ȟ(η)

Γ̌(η)

Figure 3.7 Structure of the boundary layer at

η = 0as described by (3.18).

where the constant h∗ defines the film thickness at η = 0, ȟ(0) = h∗, where Γ̌(0) = 0

(Γ = Γmax),

h∗ =
3h1h2

(
h1 + h2

)
2
(
h2

1 + h1h2 + h2
2

) . (3.19)

As expected, these equations describe a unique smooth solution connecting h → h1 to

h → h2 and Γ ′
→ G1 to Γ ′

→ G2, see Figure 3.7.

3.4 Matching and overall structure

As t → ∞ since the influence of quasistatic evolution becomes weak, it is valid to treat

the outer solution (3.6) and the boundary layers as steady traveling waves to leading or-

der. Consequently, the results of [16] may be applied directly to carry out the asymptotic

matching of the boundary layers to the outer solution. Notably, it is found that the lead-

ing order wave speeds are identical,

s = ŝ1 = ŝ2 (3.20)

for s given by (2.3). Briefly, matching the boundary layer at η1 to the outer solution (3.10)

requires finding a solution of (3.13a) and (3.13b) that satisfies ĥ(y → ∞) → h1 and

Γ̂(y → ∞) → ∞ with Γ̂ ′(y → ∞) → G1. Substituting these into (3.13b) yields −ŝ1 +

(1/2)h2
1 − h1G1 = 0, similar to [16]. It is notable that this algebraic matching condition,

and likewise the one obtained from (3.13a) are independent of ΓL. The consequence is

that to leading order, despite the fact that the outer solution is a self-similar growing
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profile (3.10), for long times the overall solution (outer and boundary layers) can be un-

derstood in terms of a single traveling wave with speed s.

4 Discussion and conclusions

The presence of a finite mass of insoluble surfactant on a film moving down an inclined

substrate introduces new structure to the leading edge of the fluid film. Provided that

the threshold condition (2.6) holds, despite the new structure of the film, the solution

propagates with the same speed as if there were no surfactant.

When surfactant is continually supplied from upstream, the solution is no longer

a traveling wave. While a well-defined wave speed is maintained, in the frame of refer-

ence moving with that speed, the solution exhibits a self-similar growing form for t → ∞;

similar behavior has been observed in other thin film problems [8, 24]. We have been able

to obtain expressions for the accumulation of surfactant and leading order asymptotic

forms for the film and surfactant profiles subject to relatively few assumptions on the

dynamics. While the arguments presented here are not rigorous, the approaches consid-

ered could provide good starting points for further analyses of this problem.

In forthcoming work [17], further analysis of the traveling wave (2.4) will be pre-

sented: structural stability with respect to regularization and the limits of β → 0, δ → 0

and weak fourth-order capillary effects, as well as other questions of stability. It is worth

noting again that the solutions presented here depend on the threshold condition (2.6).

Above this threshold, for example in the case of an initially flat film, the form of solutions

is not known, and numerical simulations suggest that more complicated dynamics take

place [16]. Further work on this problem is being pursued [17].

Acknowledgments

We thank the referee for incisive questions and helpful suggestions that improved the article. Parts

of this research were presented by MS at the IPAM workshop on thin films and fluid interfaces. We

thank the organizers and IPAM for an enjoyable and productive meeting. The first and third authors

were supported by NSF Grants DMS-0239125 CAREER and DMS-0244498 FRG. The second author was

supported by NSF Grant DMS-0244491 FRG.

References

[1] A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices of the

American Mathematical Society 45 (1998), no. 6, 689–697.

[2] A. L. Bertozzi, A. Münch, and M. Shearer, Undercompressive shocks in thin film flows, Physica

D: Nonlinear Phenomena 134 (1999), no. 4, 431–464.

D
ow

nloaded from
 https://academ

ic.oup.com
/am

rx/article/doi/10.1155/AM
R

X/2006/15487/135867 by guest on 10 April 2024



20 Thomas P. Witelski et al.

[3] M. S. Borgas and J. B. Grotberg, Monolayer flow on a thin film, Journal of Fluid Mechanics 193

(1988), 151–170.

[4] J. Buckmaster, Viscous sheets advancing over dry beds, Journal of Fluid Mechanics 81 (1977),

no. 4, 735–756.

[5] A. D. Dussaud, O. K. Matar, and S. M. Troian, Spreading characteristics of an insoluble surfac-

tant film on a thin liquid layer: comparison between theory and experiment, Journal of Fluid

Mechanics 544 (2005), 23–51.

[6] B. D. Edmonstone, O. K. Matar, and R. V. Craster, Flow of surfactant-laden thin films down an

inclined plane, Journal of Engineering Mathematics 50 (2004), no. 2-3, 141–156.

[7] , Surfactant-induced fingering phenomena in thin film flow down an inclined plane,

Physica D: Nonlinear Phenomena 209 (2005), no. 1–4, 62–79.

[8] J. C. Flitton and J. R. King, Surface-tension-driven dewetting of Newtonian and power-law

fluids, Journal of Engineering Mathematics 50 (2004), no. 2-3, 241–266.

[9] H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: nonnegative solutions

of a coupled degenerate system, SIAM Journal on Mathematical Analysis 37 (2006), no. 6,

2025–2048.

[10] B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction,

Progress in Nonlinear Differential Equations and Their Applications, vol. 60,Birkhäuser,Basel,
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